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Abstract
Ultra-relativistic electromagnetic plasmas can be used for improving our
understanding of the quark–gluon plasma. In the weakly coupled regime, both
plasmas can be described by transport theoretical and quantum field theoretical
methods leading to similar results for the plasma properties (dielectric tensor,
dispersion relations, plasma frequency, Debye screening, transport coefficients,
damping and particle production rates). In particular, future experiments
with ultra-relativistic electron–positron plasmas in ultra-strong laser fields
might open the possibility of testing these predictions, e.g. the existence of
a new fermionic plasma wave (plasmino). In the strongly coupled regime,
electromagnetic plasmas such as complex plasmas can be used as models or
at least analogies for the quark–gluon plasma possibly produced in relativistic
heavy-ion experiments. For example, pair correlation functions can be used
to investigate the equation of state and cross section enhancement for parton
scattering can be explained.

PACS numbers: 12.38.Mh, 52.27.Ny, 52.27.Ep, 52.27.Gr, 52.27.Lw

1. Introduction

At very high temperatures (T > 150 MeV) and densities (ρ > 1GeV fm −3), it was predicted
that QCD implies that there should be a phase transition from nuclear or hadronic matter
to a system of deconfined quarks and gluons [1]. The early Universe should have been in
this state for the first few microseconds [1]. Such a phase transition could also occur in the
interior of neutron stars [2] or in relativistic nucleus–nucleus collisions leading to the so-called
quark–gluon plasma (QGP) [3]. The phase diagram is sketched in figure 1. The nature of
this phase transition is similar to the Mott transition from an insulator to a metal [4], where
the insulator phase at low pressure corresponds to the confined phase (nuclear matter) and the
metallic phase at high pressure, e.g. metallic hydrogen [5] predicted to exist in the interior of
Jupiter [6], to the deconfined phase (QGP).
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Figure 1. Sketch of the QCD phase diagram.

Figure 2. Spacetime evolution of the fireball in an ultra-relativistic heavy-ion collision.

Estimates show that a QGP droplet containing a few thousand quarks and gluons (partons)
can be formed in the fireball of a heavy-ion collision which exists for a few fm c−1. The
spacetime evolution of the fireball looks like this (see figure 2) [7]: after the collision of
the two nuclei, in which the nucleons dissolve into quarks and gluons, a pre-equilibrium phase
is present for about 1fm c−1 which approaches equilibrium by secondary parton interactions.
If the temperature and energy density are above the critical values, the fireball will be in the
QGP phase, which should be in thermal but may be not in chemical equilibrium [8]. Due to
the expansion, the fireball will cool and the transition temperature will be reached after a few
fm c−1 followed by a mixed phase in the case of a first-order transition and a hadronic phase.
Finally, the hadrons will cease to interact if the system becomes dilute (freeze-out).

Since the QGP cannot be observed directly, the big question is how to detect it. Only
by comparing theoretical predictions of signatures for the QGP formation with experimental
data, i.e. by circumstantial evidence, can this goal be achieved. Hence, a quantitative and
detailed theoretical description of the QGP is required. Basically, there are three different
methods: the first one, perturbative QCD, is valid only for large parton momenta or extreme
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high temperatures for which the interaction between the partons becomes weak due to a
property of QCD called asymptotic freedom. Perturbative QCD allows the calculation of
static properties, e.g. equation of state, as well as dynamical quantities, e.g. parton scattering
cross sections. The second method, lattice QCD, is a truly non-perturbative method based on
numerical simulations for solving the QCD equations on a discrete four-dimensional spacetime
lattice. Unfortunately, this technique can only be applied to static quantities whereas most
signatures of the QGP are dynamical like particle production rates. The third method, which
I would like to discuss here in particular, is to apply and extend techniques from classical
electromagnetic plasmas to the QGP. For example, transport theory (Boltzmann equation) or
molecular dynamical simulations are widely used to describe properties of plasmas. Also,
analogies with ideas and analytic models in plasma physics can be useful. I will explain this
in the following sections following partly the review article [9].

It should be noted, however, that there are important differences between the QGP and
usual ion–electron plasmas. First of all, the QGP is a relativistic system. Therefore a
comparison with a relativistic electron–positron plasma, as is found in supernova explosions,
is more appropriate. Second, the interactions in the QGP are based on QCD, i.e. color charges
instead of electric charges have to be considered. In particular, the non-Abelian character
of the interaction between quarks and gluons has a strong influence on the properties of the
QGP especially at temperatures close to the deconfinement transition. Hence, the comparison
with electromagnetic plasmas allows only qualitative insights for the properties of the QGP in
ultra-relativistic heavy-ion collisions.

First I will start with the weakly coupled phase of the QGP, in which perturbative QCD
can be used. As we will see, the methods and results are very similar to a hot QED plasma
(electron–positron plasma) which can be investigated in the laboratory using ultra-strong lasers
in the near future and can therefore serve also as a test model for the QGP. Afterward, I will
discuss the strongly interacting phase of the QGP by comparing it with strongly coupled
electromagnetic plasmas as discussed in [10–12].

2. The weakly coupled quark–gluon plasma

Interactions between partons in the QGP lead to collective phenomena, such as Debye
screening and plasma waves, or transport properties, such as viscosity. At temperatures
far above the critical temperature Tc for the deconfinement phase transition, the effective
temperature-dependent strong coupling constant, αs = g2/4π , becomes small. At
temperatures which can be reached in heavy-ion experiments (T < 4Tc), αs = 0.3–0.5 is
not really small rendering the applicability of perturbation theory, which is an expansion in
the coupling constant, questionable. Perturbation theory in quantum field theory is most
conveniently done by using Feynman diagrams which can be via Feynman rules directly
translated into scattering amplitudes from which physical measurable quantities such as
cross sections, damping and production rates, and lifetimes follow. If the interactions take
place in the presence of a heat bath such as the QGP background, one has to consider
QCD at finite temperature. For this purpose the Feynman rules have to be generalized
to finite temperatures (and chemical potential), which can be done in either the imaginary
[13] or real [14] time formalism. For an application of this method to the QGP, see, for
example, [15].

Alternatively, transport theory can be used. For example, the dielectric tensor of the QGP
can be derived by combining the Vlasov and Maxwell equations. In an isotropic QED plasma,
in which there are two independent components, a longitudinal and a transverse, one finds in
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Figure 3. Polarization tensor in lowest order perturbation theory.

this way [16]

εL(ω, k) = 1 +
3m2

γ

k2

[
1 − ω

2k
ln

ω + k

ω − k

]
,

εT (ω, k) = 1 − 3m2
γ

2k2

[
1 −

(
1 − k2

ω2

)
ω

2k
ln

ω + k

ω − k

]
,

(1)

where ω is the frequency, k = |k| is the momentum and mγ = eT /3 is the plasma frequency.
In the case of the QGP, this result also holds if one replaces mγ by mg = √

(1 + nF/6)/3 gT ,
where nF is the number of quark flavors in the QGP. The Debye screening length following from
the static limit (ω = 0) of the longitudinal dielectric function is given by λD = 1/(

√
3mγ ).

For ω2 < k2, the dielectric functions become negative corresponding to Landau damping.
The same result can be obtained by calculating the polarization tensor 	μν of figure 3 in

the high-temperature approximation [17, 18] and using the relation [19]

εL(ω, k) = 1 − 	L(ω, k)

k2
, εT (ω, k) = 1 − 	T (ω, k)

ω2
, (2)

where 	L = 	00 and 	T = ∑
ij (δij − kikj /k2)	ij /2 with i and j representing the space

indices.
Using the Maxwell equations the dispersion relations ωL,T (k) of plasma waves, describing

the propagation of electromagnetic, i.e. photons (or chromoelectromagnetic, i.e. gluons, in the
case of a QGP), waves in the plasma, can be found from

εL(ω, k) = 0, εT (ω, k) = k2

ω2
. (3)

The dispersion relations are shown in figure 4, where the branch ωL is called a plasmon,
representing a longitudinal electromagnetic wave in the medium which does not exist in
vacuum. In a relativistic plasma the transverse waves associated with the magnetic interaction
are as important as the longitudinal ones (plasmons), whereas in non-relativistic plasmas
only the plasmons are of significance. If one wants to go beyond the high-temperature
approximation, one cannot use classical transport theory but has to consider higher order
diagrams for the polarization tensor.

Further interesting quantities can be derived from the dielectric tensor. For example, the
wake potential of a moving charge Q with velocity v, such as a heavy quark propagating
through the QGP with a large transverse momentum from initial hard collisions, is given
by [20]

φ(r, t, v) = Q

2π2

∫
d3k

e−ik·(r−vt)

k2εL(ω = v · k, k)
. (4)

Wakes created by fast quarks in a QGP lead to an attraction and the possible formation of
diquarks [21]. Wakes and Mach cones have also been observed in complex or dusty plasmas
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Figure 4. Dispersion relations of photons in a QED plasma or gluons in a QGP.

[22]. A closely related quantity is the energy loss of an energetic quark or gluon in the QGP.
Partons with a large transverse momentum pT are created from initial hard collisions between
the partons in the nuclei. These quarks and gluons propagate through the fireball losing energy.
The energy loss coming from the back reaction of the induced electric field of a fast moving
charge in a plasma can be expressed by the dielectric functions of the plasma [23]. In the case
of a high energy quark with velocity v in the QGP, this energy loss is given by [24]

dE

dx
= − 4αs

3πv2

∫
dk

k

∫ vk

−vk

dω ω

[
Im

1

εL(ω, k)
+ (v2k2 − ω2)Im

1

ω2εT (ω, k) − k2

]
. (5)

In addition, there are contributions to the energy loss from elastic parton scattering and from
bremsstrahlung (radiative energy loss) [25]. The combination of the energy loss by the
induced electric field, corresponding to long-range interactions within the plasma, together
with individual elastic scatterings is called collisional energy loss. A consistent perturbative
treatment of the collisional energy loss based on the hard thermal loop resummation technique
[26] was presented in [27]. Later on, it was argued that the radiative energy loss dominates
for relativistic partons in the QGP (see e.g. [25]). However, it could be shown [28, 29] that
for the quenching of high-pT hadron spectra resulting from the energy loss the collisional and
radiative energy loss contribute equally. Indeed, the quenching of hadron spectra observed at
RHIC is significantly larger than that predicted solely from the radiative energy loss, which was
accepted as a signature for the formation of a QGP phase in relativistic heavy-ion collisions
at RHIC as the energy loss in hadronic matter is assumed to be smaller [29].

The dielectric functions (1) are derived from the Vlasov equation, i.e. for the case of a
collisionless plasma. Of course, in most cases collisions play an important role in a plasma,
e.g. for equilibration and transport properties, and cannot be neglected. Collisions can be
considered by using the Boltzmann equation (Vlasov equation plus collision term). There
are several approximations to this equation, of which the relaxation time approximation
replacing the collision integral by a constant collision rate ν is the simplest one. In particular,
the formalism proposed in [30] has been applied to low-temperature plasmas successfully
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Figure 5. Fermion self-energy in lowest order perturbation theory.

(for complex plasmas, see e.g. [31]). In this case, an analytic expression for the dielectric
functions containing the collision rate can be derived for ultra-relativistic plasmas [32]. For
example, the longitudinal dielectric function now reads as

εL(ω, k) = 1 +
3m2

γ

k2

[
1 − ω + iν

2k
ln

ω + iν + k

ω + iν − k

] [
1 − iν

2k
ln

ω + iν + k

ω + iν − k

]−1

. (6)

The plasmon dispersion relation now cuts the light cone (ω = k) at a finite value of k and the
plasma frequency is given by ωL(k = 0) < mγ . In the case of a QGP, mγ is again replaced
by mg .

In heavy-ion collisions, the fireball expands dominantly in the longitudinal (beam)
direction. Hence, the system is not isotropic and more components of the dielectric tensor
have to be considered [33]. In anisotropically expanding plasmas, instabilities such as the
Weibel instability show up. It has been shown that these instabilities can drive a QGP rapidly
to equilibrium even in the weakly coupled case [34]. However, using the relaxation time
approach as in (6) it was argued that these instabilities are suppressed to some extent by the
presence of collisions in the plasma [35].

Ultra-relativistic plasmas offer the exciting possibility of observing a new kind of
collective modes besides electromagnetic ones, namely fermionic modes. They cannot be
derived from the dielectric function but from the electron or quark self-energy. In lowest
order perturbation theory, the fermion self-energy is given by the diagram in figure 5. The
pole of the effective fermion propagator following from a resummation of this self-energy
describes the dispersion relation of collective fermion modes in the plasma. As in the case of
electromagnetic (photon or gluon) waves, there are two branches: one with a positive ratio of
helicity to chirality and one with a negative, which is absent in vacuum, called plasmino [36].
The plasmino branch shows a minimum at a finite value of the momentum p as sketched in
figure 6. A minimum in the dispersion relation leads to van Hove singularities which could
show up in sharp peaks in the dilepton production rate in the QGP, serving as a possible
signature for the QGP formation [36]. It was argued that this minimum in the plasmino
branch is a general feature of ultra-relativistic plasmas independent of the approximation, e.g.
perturbation theory [37]. The observation of collective electron modes in an ultra-relativistic
electron–positron plasma, produced by strong laser fields in the laboratory [38], would be an
exciting discovery, also serving as a test for the QGP [39].

As a side remark, I would like to mention that the fermion self-energy can also be
calculated perturbatively at high quark densities by introducing a finite chemical potential μ.
In this way, for example, a quasi-particle mass for quarks in quark matter can be derived which
describes the equation of state of a quasi-particle Fermi gas. The mass–radius relation for
quark stars has been computed using this equation of state [40]. However, so far no indications
for quark stars have been found (see e.g. [41]).

There are a number of other interesting quantities which can be calculated by perturbation
theory going beyond the classical high-temperature approximation. For this purpose, one
has to adopt the hard thermal loop resummation technique in order to obtain consistent,
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Figure 6. Dispersion relations of electrons in a QED plasma or quarks in a QGP.

i.e. complete to leading order, infrared finite, and gauge independent, results [26]. Important
examples are damping rates, transport rates, mean free paths, collision times and transport
coefficients (viscosity) of electrons, quarks, photons and gluons [15, 39]. Of course,
these results hold only in the limit of extremely high temperatures—even at the Planck
scale, the QCD coupling constant g is of the order of 1/2. However, they might provide
qualitative insight into important aspects of the physics of the QGP such as the role of
collective effects. In the case of an electron–positron plasma, however, these calculations are
reliable, serving as predictions for such a QED plasma which might be produced in strong
laser fields soon [39].

3. The strongly coupled quark–gluon plasma

The essential parameter distinguishing between weakly coupled and strongly coupled
non-relativistic plasmas is the Coulomb coupling parameter defined by the ratio of the
interaction energy (Coulomb energy) between the plasma particles to their thermal energy
[42]:

 = Q2

dkB T
, (7)

where Q is the charge of the particles, d is the interparticle distance and T is the plasma
temperature. For strongly coupled plasmas, this parameter is of the order of 1 or larger. For
example, for the ion component in a white dwarf  can be between about 5 and 500. In complex
or dusty plasmas, which contain micron size particles, e.g. dust grains, the microparticle
component is highly charged (several thousand elementary charges) due to electron collection
and interacts via a Yukawa potential leading to a  between 1 and 105 depending on the
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particle size and the plasma parameters [43]. A simple, extensively studied model for a
strongly coupled plasma is the one-component plasma, in which particles of the same charge
in a neutralizing background interact via a Coulomb potential [42]. For  > 1, the plasma
shows a liquid-like behavior (see below), and for  > 172 a crystalline structure. Such a
plasma crystal has been observed in complex plasmas in the laboratory [44]. An improvement
of the one-component model is the Yukawa system taking into account the Debye screening
of the particle charge.

In the case of a QGP, the interaction parameter was estimated to be [45]

 = 2
Cαs

dkB T
, (8)

where C = 4/3 is the Casimir invariant in the case of quarks and C = 3 in the case of
gluons. The pre-factor of 2 has been added to consider the fact that in relativistic plasmas,
the magnetic interaction is as important as the electric. Employing realistic values for RHIC
energies, e.g. T = 200 MeV, αs = 0.3–0.5 and d = 0.5 fm, we find  = 1.5–6. Here, it
should be noted that only the Coulomb potential corresponding to a one-gluon exchange was
assumed. Higher order and non-perturbative effects can increase the value of  significantly.
Anyway, this estimate indicates that the QGP in ultra-relativistic heavy-ion collisions is a
strongly coupled plasma probably in the liquid phase. This means that there could be a phase
transition to a QGP gas at higher temperatures where  will be smaller [46]. However, only
in the simultaneous presence of attractive and repulsive interactions, such as a Lennard–Jones
potential, this phase transition is of first order with a critical end point. Otherwise, the system
is always in the supercritical phase allowing no determination of a sharp borderline between
the liquid and the gaseous behavior.

The theoretical description of the strongly coupled QGP is difficult because perturbative
QCD is not applicable and lattice QCD is restricted to static quantities and its accuracy at
finite temperature—not to speak of finite chemical potential—not yet satisfactory in many
cases. Therefore electromagnetic strongly coupled plasmas, which can be investigated more
easily, and the methods, e.g. molecular dynamics [47, 48], for describing them are considered
to improve our—at least qualitative—understanding of the QGP by analogy. For example,
ultra-cold quantum gases exhibit a similar behavior in the flow pattern observed at RHIC
[49]. The elliptic flow investigated in these heavy-ion collisions can be described very well by
ideal hydrodynamics, indicating the presence of an almost ideal QGP liquid [50]. Also,
high-density plasmas produced by shooting heavy-ion beams onto solid-state targets are
another example of strongly coupled plasmas in the laboratory [51]. A model system for
the QGP which can be produced for a wide range of values of  and investigated on the
microscopic and dynamical level in real time by direct optical observation is the complex
plasma, already discussed above. It has the further advantage that the strong coupling is due
to the large coupling (high charge of the microparticles) as in the case of the QGP and not
because of high density or low temperature.

Important tools for investigating fluids, such as complex plasmas in the liquid phase, on
the microscopic level are the pair correlation function and its Fourier transform, the static
structure function [52]. The qualitative behavior of the latter for the gas and liquid phases is
shown in figure 7. Using the hard thermal loop approximation, valid in the weak coupling
limit, a gas-like behavior of an interacting quark system is found [53]:

S(p) = 2nFT
3

n

p2

p2 + m2
D

, (9)

where n is the particle density, nF is the number of quark flavors and mD = 1/λD is the inverse
Debye screening length. It would be interesting to compute the static structure function
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Figure 7. Qualitative behavior of the static structure function for the liquid and gaseous phases.

non-perturbatively for realistic situations, in particular by using lattice QCD, to see whether
an oscillatory behavior indicating a QGP liquid will be found.

Another example of a lesson that can be learned from strongly coupled electromagnetic
plasmas is the cross section enhancement of the particle scattering due to nonlinear effects.
It has been argued that RHIC data imply a cross section enhancement in the elastic parton
scattering by an order of magnitude compared to perturbative results [54]. Indeed in strongly
coupled plasmas, such as complex plasmas [55], such a cross section enhancement takes place
because the interaction range in these plasmas is larger than the Debye screening length which
therefore cannot be used as an infrared cutoff in the calculation of the absolute cross section.
An estimate of this effect in the QGP case gives a parton cross section enhancement by a
factor of 2–9 implying a small mean free path, a small viscosity and a fast thermalization
in accordance with RHIC experiments [45]. Furthermore, such a cross section enhancement
would lead to a further increase of the collisional energy loss, given approximately by the
energy transfer per collision divided by the mean free path. The radiative energy loss, on the
other hand, could be suppressed due to an enhancement of the Landau–Pomeranchuk–Migdal
effect, which describes a suppression of the photon or gluon radiation if the time between two
scatterings is too small to allow the emission of the photon or gluon [46].

As a last example for an interesting comparison between the QGP and strongly coupled
electromagnetic plasmas, let me mention the prediction of a lower limit for the ratio of viscosity
to entropy density from string theory (AdS/CFT) [56]:

η

s
� h̄

4πkB
, (10)

which is widely discussed in the QGP community because the QGP seems to come close
to this limit [57]. In general, strongly interacting systems show a small viscosity, e.g. the
one-component plasma has a minimum in the viscosity at  = 21 [58]. The minimum of
the ratio of viscosity to entropy density in the one-component plasma at  = 12 is about five
times above the string theory limit [59]—water under normal conditions exceeds this limit by
about a factor of 400—similar to predictions for the QGP.

4. Conclusions

Transport theoretical methods (Vlasov and Boltzmann equation) widely used for
non-relativistic electromagnetic plasmas and perturbative field theory at finite temperature
(and chemical potential) can be used for describing the weakly coupled phase of the QGP,
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e.g. collective and transport properties, and high-energy phenomena (jets, hard photons) in the
QGP. Also, properties of a relativistic electron–positron plasma produced in ultra-strong laser
fields or supernovae can be treated in this way. The comparison between these two systems
might be helpful to learn about the role of the strong coupling effects in the QGP. Field
theoretic predictions of a new phenomenon not known from non-relativistic plasmas, namely
the existence of collective fermion modes (plasminos), might open exciting investigations of
relativistic electron–positron plasmas in the laboratory.

Properties of a strongly coupled QGP such as a liquid phase, cross section enhancement
and small viscosity can be studied in analogy to strongly coupled electromagnetic plasmas. In
particular complex plasmas, which can be easily produced with a highly tunable interaction
strength and directly investigated on the microscopic and dynamical level, showing a large
variety of interesting features such as solid and liquid phases might be useful in this respect.
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